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Abstract
Cognitive measurement models decompose observed behav-
ior into latent cognitive processes. For situations with more
than one condition, such models allow to test hypotheses on
the level of the latent processes. We propose a fully Bayesian
ensemble model approach to test hypotheses on the level of
the latent processes in situations in which multiple measure-
ment models or model classes exist. In the first step, one needs
to perform a Bayesian model selection step comparing the hy-
potheses within each model class. Aggregating the results of
the first step yields ensemble posterior model probabilities. We
provide an example for a working memory data set using an
ensemble of a resource model and a slots model.
Keywords: ensemble models; model selection; Bayesian in-
ference

Introduction
One of the central goals of cognitive science is to develop
accurate characterizations of observed behavior in terms of
latent cognitive processes. But because it is not possible to
directly observe such processes, their existence and interplay
needs to be inferred from data coming from specific exper-
imental designs. One privileged approach to evaluate latent
processes is through cognitive measurement models, which
instantiate their relationship with observed data in a clear
and general way. These models can be used to directly test
process-level hypotheses: For example, if a researcher has
data from participants coming from two different populations
or under two different conditions she might have specific hy-
potheses which of the underlying processes (e.g., processes A
and B) is responsible for these differences.

One complication often emerges when using some mea-
surement model to guide our inferences: The model we are
using is not the only possible account of the data. Many other
classes of models also exist, and they can differ substantially
in terms of their basic assumptions. If the available evidence
suggests that the different models are all at least of approx-
imately equal validity the researcher usually has to make a
decision on which of the available models she bases her in-
ference. Here, we propose an alternative solution for such
a situation based on model ensembles. Model ensembles or
ensemble learning is a popular approach in machine learn-
ing (e.g., Polikar, 2006) and climate science (e.g., Tebaldi
& Knutti, 2007) and usually refers to the process of pool-
ing predictions across different models. A similar approach
is taken in Bayesian model averaging (Wasserman, 2000).
The solution proposed here differs from the existing ensem-
ble or model-averaging approaches in that it is not based on

the pooling of model predictions or parameter values, but on
results from hypotheses tests.

Specifically, we propose to first perform a model selec-
tion step across the different hypotheses – separately for each
model class. For example, consider model classes M P

• and
M R
• , each with its own sets of assumptions. Within each

model class we establish special cases that reflect the differ-
ent hypotheses of interest (e.g., models M P

1 and M R
1 ). The

hypotheses being tested across model classes should reflect
analogous statements. For example, the hypothesis that mem-
ory is improved across conditions, which can be stated in
terms of both model classes, irrespective of the exact way
memory processes are established within each class. Using
Bayesian model selection, we obtain posterior model proba-
bilities for each of the hypothesis of interest, separately for
each class. In a second step, these posterior model probabili-
ties are pooled across model classes to produce the ensemble
posterior model probabilities.

The remainder of this manuscript is organized as follows.
We first provide an overview over Bayesian model selec-
tion and describe how to calculate ensemble posterior model
probabilities. We then provide an example using a working-
memory dataset and two popular measurement models in this
domain.

Bayesian Model Selection
The main principle underlying the Bayesian statistical frame-
work is the quantification of uncertainty with probabilities
(Gelman et al., 2013). Estimating the parameters θ of model
M with likelihood function pM (y|θ) in a Bayesian frame-
work requires the specification of a prior distribution pM (θ).
The prior distribution quantifies the relative uncertainty one
has regarding ones parameters prior to seeing the data y. This
prior distribution is then updated in light of the data using
Bayes’ theorem yielding a posterior distribution pM (θ|y),
with

pM (θ|y) = pM (y|θ)pM (θ)∫
pM (y|θ)pM (θ)dθ

. (1)

The posterior distribution quantifies the uncertainty or knowl-
edge one has regarding ones parameters after seeing the data.
If the parameters of the model are of primary interest the pos-
terior distribution can be directly used for inference.

In most real life cases the posterior distribution cannot be
obtained analytically. A common approach to approximate it



is to sample from the unnormalized posterior (i.e., the numer-
ator in Equation 1) using numerical methods such as Markov
chain Monte Carlo (MCMC). For parameter estimation this
is completely sufficient as the posterior is proportional to the
unnormalized posterior for fixed data. The normalizing con-
stant in the denominator,

p(y|M ) =
∫

pM (y|θ)pM (θ)dθ, (2)

usually called the marginal likelihood, is independent of θ,
and cannot be obtained as easily as the unnormalized poste-
rior. However, Gronau, Singmann, and Wagenmakers (2017)
have recently introduced a software package that allows to
obtain the marginal likelihood from the unnormalized poste-
rior using bridge sampling.

Marginal likelihoods are the central quantity of interest in
Bayesian model selection (Wasserman, 2000), as they pro-
vide a compromise between a model’s ability to describe the
observed data at hand, and its a priori ability to describe
any data. The first multiplicative term in Equation 2 corre-
sponds to the likelihood of the data under a certain set of pa-
rameter values θ. The second term corresponds to the prior
probability attributed to this set of parameter values. The
marginal likelihood therefore corresponds to a weighted av-
erage likelihood (averaged across parameter values), where
the weights are given by the parameter prior probability dis-
tribution. Now, this average likelihood will be smaller if
the prior weights are dispersed across parameter values that
would make predictions that are far from the observed data.
This reduction is a de facto penalty for unwarranted flexi-
bility, thereby implementing the principle of parsimony also
known as Occam’s razor (e.g., Myung & Pitt, 1997). Ideally,
a model and its prior parameter distribution should produce
a range of predictions that encompasses what is actually ob-
served and excludes what is not. Models which are able to
predict almost all possible data will have a lower marginal
likelihood than those models that only predict those data that
are actually observed.

The model with the largest marginal likelihood is then con-
sidered to be the one that gathers the greatest support (i.e., the
best trade-off between goodness of fit and flexibility). For any
finite set of models M1, ...,Mk, their marginal likelihoods can
be used to compute posterior model probabilities. For model
Mi:

p(Mi|y) =
p(y|Mi)p(Mi)

∑
k
j=1 p(y|M j)p(M j)

, (3)

where p(Mi) is the prior model probability for model Mi be-
fore seeing the data. In words, the posterior model probabil-
ities are equal to the relative product of marginal likelihood
and prior model probabilities across all candidate models.

An important aspect of the marginal likelihood is that pos-
terior model probabilities are not only sensitive to the prior
model probabilities, but also depend to a large extend on the
parameter priors. For example, it is easy to construct cases for

which the choice of priors can determine which model ulti-
mately provides the best account (see e.g., Lindley’s paradox;
Hill, 1982). Consequently, much research is concerned with
developing appropriate priors for Bayesian model selection
in specific situations. This issue is particularly serious when
attempting to compare non-nested models, as it becomes less
obvious how priors can bias results.

For nested models corresponding to a standard null hy-
pothesis – that is, model M0 is a special case of a model
M1 such that fixing one parameter in M1 to zero produces
M0 – a recipe for producing default priors was developed by
Jeffreys (1961). The basic idea is to reparameterize the mod-
els such that the difference parameter δ that differs between
M1, with parameters θ1 = (θ0,δ), and M0, with parameters
θ0, is scaled by the parameters θ0 that are shared across M1
and M0. For example, for a t-test δ = µ

σ
. As a consequence,

the scale of δ becomes independent of the actual data and a
prior on θ can be specified in a reasonable manner. Common
priors for δ are a normal (i.e., Gaussian) or Cauchy distribu-
tion.

Ensemble Posterior Model Probabilities
Ensemble posterior model probabilities are concerned with a
situation in which we have at least two experimental condi-
tions and models from at least two model classes that can be
applied to each condition and decompose the observed be-
havior into similar latent processes. We also assume that the
interest of the researcher is in inferences on these latent pro-
cesses across conditions. What constitutes a model class can
be understood broadly (e.g., completely different assumption
or merely different settings of parameter values). Here it is
only relevant that Bayesian model selection between models
from these model classes might be seen as problematic.

The first step is to perform a Bayesian model selection step
within each model class using the default prior approach of
Jeffreys (1961). That is, one needs to calculate marginal like-
lihoods for a set of models belonging to each model class
that correspond to the possible ways in which the parameters
representing the latent processes can be restricted between
the conditions. Note that the set of models needs to be con-
structed such that for each model in a given model class an
equivalent model exists in the other model classes. Equiva-
lent here means that the parameter restrictions of the model
in a given model class correspond to a hypothesis in terms of
the latent processes that can also be expressed as a parameter
restrictions for each of the other model classes. The marginal
likelihoods are then used to calculate posterior model proba-
bilities within each model class.

To calculate the ensemble posterior model probabilities,
the posterior model probabilities need to be aggregated across
model classes. Specifically, one needs to take the average
across models which correspond to the same hypothesis. As
the average of different probability distributions is not neces-
sarily a proper probability distribution, the resulting average
needs to be renormalized. The result can be used for infer-
ences on the hypotheses on the level of the latent processes.



As before, let us consider a situation with two model
classes, class R with models M R

• and class P with models
M P
• , which each decompose the observed behavior into la-

tent processes a and b via parameters θ
R/P
a and θ

R/P
b , respec-

tively (a substantive example is given in the next section).
Further, assume we have obtained data y from two conditions
f and g and are interested if and how the latent processes dif-
fers between the conditions. Because we have two latent pro-
cesses that might or might not differ independently across the
conditions we need to set up a total of four models for each
model class to explore the full hypothesis space. In case pa-
rameter differences are assumed to exist between models we
introduce standardized difference parameters δ as discussed
above.

• M∅ assumes no differences and has two parameters,
(θa,θb), with θa, f = θa,g = θa and θb, f = θb,g = θb.

• Ma assumes differences in a only and has three parameters,
(θa,δa,θb), with θa, f = θa +

δa
2 , θa,g = θa− δa

2 , and θb, f =
θb,g = θb.

• Mb assumes differences in b only and has three parameters,
(θa,θb,δb), with θa, f = θa,g = θa, θb, f = θb +

δb
2 , θb,g =

θb− δb
2 .

• Mab assumes differences in both a and b and has four
parameters, (θa,δa,θb,δb), with θa, f = θa +

δa
2 , θa,g =

θa− δa
2 , θb, f = θb +

δb
2 , θb,g = θb− δb

2 .

After calculating the marginal likelihoods for each model,
Bayesian model selection provides us with a set of four pos-
terior model probabilities for each model class, p(M P

i |y) for
class P and p(M R

i |y) for class R, where i ∈ (∅,a,b,ab). The
ensemble posterior model probabilities are then given by

p(M e
i |y) =

p(M P
i |y)+ p(M R

i |y)
∑

4
j=1 p(M P

j |y)+ p(M R
j |y)

. (4)

Measurement Models for Detection Experiments
In many experiments across a variety of different domains –
such as perception, memory, or reasoning – participants have
to decide for each stimulus if it falls into one of two mutu-
ally exclusive categories: signal absent (e.g., a not-studied
lure in a memory experiment) versus signal present (e.g., a
studied stimulus). The observed behavior in such detection
experiments is usually described in terms of two proportions
that sufficiently summarize the data, the probability of cor-
rectly detecting a signal present trial as such called hits (i.e.,
p(“signal”|signal present)) and the probability of incorrectly
denoting a signal absent trial as a signal present trial called
false alarm (i.e., p(“signal”|signal absent)).

We will discuss two prominent measurement models that
decompose the performance in detection experiments into
two latent processes, discriminability and response bias. Dis-
criminability is the ability of the decision maker to distinguish
the two model classes and therefore reflects task performance.

A decision maker who is comparatively good in the task will
have a high value on the discriminability parameter. Better
discriminability is associated with a decrease in hits and a de-
crease in false alarms. Response bias captures the propensity
of the decision maker to prefer one of the two response op-
tions (i.e., “signal” and “no signal”) and is in principle inde-
pendent of task performance. A conservative decision maker
will have a propensity for responding “no signal” indepen-
dent of the actual stimulus category; a liberal decision maker
will have a propensity for responding “signal” independent of
the actual stimulus category.

The most prominent measurement models for detection
experiments are based on signal detection theory (Green &
Swets, 1966; Kellen & Klauer, in press). Signal detection
theory assumes that the decision maker has access to a con-
tinuous psychological strength dimension. Signal present and
signal absent stimuli are represented as distributions on the
strength dimension. At test, each stimulus evokes a strength
signal which is compared with an established response crite-
rion c. If the signal surpasses the criterion, the decision maker
responds with “signal”; otherwise the response “no signal” is
given. The usual assumption is that both stimulus classes fol-
low a normal (i.e., Gaussian) distribution. Furthermore, to
establish the scale on the strength dimension, the mean µl
and variance σ2

l of the lure distribution is fixed to 0 and 1,
respectively. For the type of design described here it is also
common to fix the variance of the signal distribution σ2

s to 1
as well. This provides the following model equations:

p(hit) = Φ(µs− c),

p(false alarm) = Φ(−c),
(5)

with Φ() corresponding to the cumulative distribution func-
tion of the standard normal distribution.

In terms of the latent processes, discriminability is captured
by parameter µs. The further apart the two distributions – that
is, the larger µs – the better the discriminability between the
two stimulus classes. The response bias is captured by pa-
rameter c. The larger c (given fixed µs) the more conservative
the response pattern.

Another popular measurement model is based on thresh-
old theory (Rouder & Morey, 2009), which assumes that
decision makers do not have direct access to a continuous
strength signal. Instead, the decision maker only has access
to a small number of discrete states. Here, we are concerned
with the high-threshold variants which assume that for each
item there is a certain probability D with which individuals
detect the true status of an item (i.e., signal present or signal
absent). In this detection state, the correct answer (i.e., “sig-
nal” for signal present trials and “no signal” for signal absent
trials) is invariably given. In case the true status of an item
is not detected with probability 1−D, an uncertainty state is
reached. In the uncertainty state response “signal” is guessed
with probability g and response “no signal” with probability



1−g. This provides the following model equations:

p(hit) = D+(1−D)g,

p(false alarm) = (1−D)g.
(6)

In terms of the latent processes, discriminability is captured
by parameter D. The better the ability of the decision maker
to detect the true status of the item the larger D. The response
bias is captured by parameter g. A conservative response bias
corresponds to a value of g < .5 and a liberal response bias
corresponds to g > .5.

Experiment and Bayesian Modeling
We have collected data from two between-subjects groups us-
ing a simple detection experiment within the domain of work-
ing memory. The two groups were high working capacity
and low working memory capacity. Our substantive ques-
tion was if there were any differences in terms of the two
latent processes (i.e., discriminability and response bias) be-
tween the two working memory capacity groups. Note that
in the working-memory domain signal-detection models are
also known as resource models and threshold models as slots
models (e.g., Donkin, Tran, & Nosofsky, 2013).

To perform the Bayesian model selection step for each of
the two model classes (i.e., signal-detection and threshold
models) we implemented both as hierarchical Bayesian ver-
sions with crossed-random effects for participants and items.
The hierarchical-structure was setup in such a way that we
not only modeled individual-level random effects, but also
the correlation among the individual-level effects using the
latent-trait approach of Klauer (2010).1 Furthermore, we as-
sumed independent group-level variances for the participant-
effects, but fixed the correlations across the two groups. For
the threshold-model, the individual-level parameters were es-
timated on the unconstrained-scale and then probit trans-
formed onto the unit range (Klauer, 2010). No transformation
was necessary for the signal-detection model.

The models were implemented in Stan (Carpenter et
al., 2017) which allowed us to put separate priors on the
group-level correlations (so-called LKJ-priors with a non-
informative scale parameter of 1) and variances (weakly-
informative half Cauchy priors with scale 5). For the
group-level model parameters, the priors were either non-
informative (i.e., normal with mean 1 and variance 1 for the
threshold model on the probit scale) or weakly-informative
(i.e., Cauchy with location 0.5 and scale 5, truncated at zero).

For each model class we implemented four different mod-
els corresponding to the four possible hypotheses as de-
scribed in the example above: no differences between condi-
tions (model none), difference in discriminability only, differ-
ence in response bias only, and differences in both, discrim-
inability and response bias. For those models that included

1To avoid a non-identifiable signal-detection model we only im-
plemented item-effects for µs and not for c. Consequently, we only
had item-effects for one parameter (i.e., µs) and could not estimate a
covariance matrix.

difference parameters δ, those were normalized based on the
pooled standard deviation from both groups and had a Cauchy
prior with location 0. For each model class and each model
corresponding to a hypothesis, we estimated two model ver-
sions, one with a Cauchy scale of 2√

2
for “medium” sized

effects and one with a Cauchy scale of 0.5 for “small” effects
(Morey & Rouder, 2015).2

To estimate the models, we obtained a total of 40,000
draws from the posterior distribution. These draws came
from four independent MCMC chains which, after 1000
warmup samples, ran for 20,000 samples, retaining every
second sample. The models showed excellent convergence,
maximal R̂ < 1.001. This comparatively large number of
posterior samples was necessary for obtaining adequate es-
timates of the marginal likelihood, which we obtained via the
bridgesampling package (Gronau et al., 2017). For each set
of posterior samples we obtained five independent estimates
of the marginal likelihoods to check for the stability of the
estimates. We performed this check on the level of the poste-
rior model probabilities which showed a maximal difference
of 1.7% across marginal likelihood estimates, an acceptable
amount of variability. We report results based on the median
of the five estimates.

Method
Participants Five-hundred and ninety students of Koç Uni-
versity were screened using the automated operation span
task (Unsworth, Heitz, Schrock, & Engle, 2005) to attain
working memory capacity measures. Of those, 21 high span
individuals (upper quartile of the sample) and 19 low span in-
dividuals (lower quartile of the sample) participated in the ex-
periment. Participants received partial course credit for par-
ticipation in the screening session and monetary compensa-
tion for taking part in the experiment.

Working Memory Task The task was a Sternberg
paradigm (i.e., short-term recognition) with letters. Stimuli
consisted of 18 consonants (b, c, d, f, g, h, j, k, l, m, n, p, r, s,
t, v, y, z) displayed in lower case. Each study list comprised
4 consonants drawn randomly without replacement from the
stimulus pool that had not appeared in the two preceding lists.
Study list items were presented sequentially for 500 ms each
at the center of the screen. Following a mask of 500 ms the
test probe was shown. Probes were either targets (i.e., shown
in the study list) or lures (i.e., not shown in the study list or
the previous trial). Participants indicated whether a probe was
a target or lure via key press.

Results
Model Fit Figure 1 shows the observed and predicted ac-
curacies for targets and lures as a function of working mem-
ory capacity. Each panel shows the predictions of the models
corresponding to one substantive hypothesis. When looking

2Note that in line with Rouder, Morey, Speckman, and Province
(2012) we used a scaling factors of ± 2√

2
instead of ± 1

2 for δ.
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Figure 1: Observed and predicted accuracy as a function of working memory capacity (WMC). Each panel shows the same
observed data, but predictions from models corresponding to different hypotheses with prior scale of the difference parameters
δ = 2√

2
. For the observed data the error bars shows ±1 standard error of the mean and the × the mean of the individual-level

means. Predicted values are based on the posterior predictive distributions of the individual-level mean accuracies and the
symbols show the mean median, the inner confidence bars shows the mean 80% credibility interval, and the outer confidence
bars shows the mean 95% credibility interval.

at the data it is clear that the differences between the high
and low capacity group are rather small (≈ 2.5%), especially
when taking the uncertainty of the estimates into account.

Both model classes appear to provide an excellent account
to the data, independent of the hypothesis that the model rep-
resents; even for the models representing no difference be-
tween the two conditions, the models capture the small differ-
ences between the conditions basically perfectly. This some-
what intriguing finding can be explained by the by-participant
random-effect. For example, the mean of the random-effects
estimates for µs of the both signal-detection model is 0.06
for the high capacity group and −0.03 for the low capacity
group. In contrast, the same estimates are 0.21 for the high
capacity group and −0.23 for the low capacity group for the
none-model. In other words, the restricted model can explain
the data by pushing the participant random-effects away from
the zero-centered prior whereas this effect is captured by δ

if present. To distinguish the models in terms of overall ad-
equacy, the marginal likelihoods tell us which of the models
provides an on average better account across the whole pa-
rameter space, taking the priors into account.

Ensemble Posterior Model Probabilities Figure 2 shows
the posterior model probabilities across the two model classes
and two prior choices. Overall the different models suggest
similar conclusions, with the threshold model putting some-
what more probability mass on models assuming an effect
compared to the signal-detection models. However, the dif-
ferences are not negligible. For the none-hypothesis the max-

imal difference between two posterior model probabilities is
larger than 30%. The impact of model class appears to be
larger than the impact of prior width.

The ensemble posterior model probabilities are shown as
‘×’s in Figure 2. The pattern is not overwhelmingly strong,
but with over 60% probability the model assuming no dif-
ference receives clearly the strongest support. The second
strongest support, with 20% probability, goes to the model
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Figure 2: Posterior model probabilities for the two model
classes and two prior choices as well as ensemble posterior
model probabilities across the four hypotheses.



assuming discriminability differs. Thus, there is no strong
evidence that the small difference between the two conditions
(see Figure 1) reflects a specific difference in terms of the la-
tent processes usually assumed in detection experiment.

Discussion
Box’s famous adage “all models are wrong” (Box, 1976) cap-
tures the notion that any model-based characterization of data
is going to be a caricature at best. Given this situation, there
is the need to ensure that any inferences made do not hinge on
the characteristics of the particular model used. The ensem-
ble approach proposed here attempts to ensure that, by con-
sidering the degree of support for a given hypothesis across
different model classes. Although all models are wrong, they
are wrong in different ways. Under the assumption that each
model captures the true data generating process to some ap-
proximate degree, but also overfits the data in its own idiosyn-
cratic way, the consensus across model classes is more likely
to reflect the true data-generating processes. In this sense,
the ensemble approach can been as trying to tap into a “wis-
dom of the crowd” (Surowiecki, 2004). The success of such
ensemble approaches over single models in terms of out-of-
sample predictive ability has been empirically demonstrated
within cognitive science (e.g., Erev et al., 2010).

Ensemble posterior model probabilities allow to test sub-
stantive hypothesis across conditions and model classes us-
ing fully Bayesian model selection. This approach is useful
when multiple cognitive measurement models that decom-
pose the observed data into similar latent processes exist for
a given dataset. The main difference to existing ensemble ap-
proaches is that we propose to use the full data (cf. Polikar,
2006, for machine learning approaches that split the data) and
build ensembles based on inferential information (i.e., poste-
rior model probabilities) instead of model predictions (e.g.,
in climate science; Tebaldi & Knutti, 2007). Our approach
also does not require any type of model weighting common
in other ensemble approaches (e.g., in Bayesian model av-
eraging) as the relevant situation is one where the candidate
models are of approximately equal validity.
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