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Abstract—How neurons influence each other’s firing depends
on the strength of synaptic connections among them. Motivated
by the highly interconnected structure of the brain, in this study,
we propose a computational model to estimate the relationships
among voxels and employ them as features for cognitive state clas-
sification. We represent the sequence of functional Magnetic Reso-
nance Imaging (fMRI) measurements recorded during a cognitive
stimulus by a set of local meshes. Then, we represent the corre-
sponding cognitive state by the edge weights of these meshes each
of which is estimated assuming a regularized linear relationship
among voxel time series in a predefined locality. The estimated
mesh edge weights provide a better representation of information
in the brain for cognitive state or task classification. We examine
the representative power of our mesh edge weights on visual recog-
nition and emotional memory retrieval experiments by training a
support vector machine classifier. Also, we use mesh edge weights
as feature vectors of inter-subject classification on Human Connec-
tome Project task fMRI dataset, and test their performance. We
observe that mesh edge weights perform better than the popular
fMRI features, such as, raw voxel intensity values, pairwise corre-
lations, features extracted using PCA and ICA, for classifying the
cognitive states.

Index Terms—Brain decoding, classification, functional
magnetic resonance imaging (fMRI), voxel connectivity.

I. INTRODUCTION

FUNCTIONAL Magnetic Resonance Imaging (fMRI) is
used as the primary modality to capture neural activations

in the brain due to its high spatial resolution and reasonable tem-
poral resolution [1]. It measures the Blood Oxygenation Level
Dependent (BOLD) responses obtained from voxels, the small-
est units of brain volumes from which fMRI measurements can
be recorded, for each repetition time (TR).

The techniques employed to learn the brain activity patterns
from the BOLD signals became popular in the last few decades
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and these techniques are recently called as Multi Voxel Pattern
Analysis (MVPA). Following the pioneering study of Haxby
et al. [2], machine learning techniques have been used for diag-
nosing disorders [3], [4], hypothesis validation [5] and classify-
ing cognitive states which is a method for predicting cognitive
states, called brain decoding.

In traditional MVPA approaches, cognitive states are usually
represented by concatenating the selected voxel intensity values
to construct a vector in a feature space. The time series recorded
at each voxel can be represented by various methods, such as
computing maximal or mean values. Also, dimension of the
feature space can be reduced by Principal Component Analysis
(PCA) and Independent Component Analysis (ICA). Then, a
classifier, such as, Support Vector Machine (SVM), k-Nearest
Neighbor (k-NN) or Naive Bayes, is trained by the feature
vectors.

State-of-the-art models adopt machine learning algorithms to
design models for brain decoding problems [6]. For example,
Graphnet [7] and TV-l1 [8], [9] methods suggest a spatial reg-
ularization technique for regression and classification problems
of brain imaging.

In addition to designing models, there exists a number of tech-
niques to extract meaningful information from fMRI signals. A
popular method for extracting a spatial feature from fMRI data
is to average the BOLD response at each voxel to represent a
stimulus [10]–[12]. A recent work, suggested by Ng et al. [13],
[14], considers each brain volume as a sample. On the other
hand, Mitchell et al. [15] and Ng et al. [16] concatenate the
BOLD responses within the same trial to extract features that
include spatio-temporal information.

In order to extract the temporal information from the fMRI
data, various studies [17]–[21] compute the pairwise correla-
tions between the responses of voxels or brain regions. Among
these studies, Pantazatos et al. [17] model temporal relationships
by using pairwise correlations between brain regions as features
for brain decoding. Moreover, Richiardi et al. [18] model a
functional connectivity graph using the pairwise correlations
between brain regions, and they decode the brain states using
graph matching algorithms. The edge weights of their brain
graph are generally selected using the correlation between pairs
of selected regions, and vertices or edge weights of the brain
graphs are used as features for cognitive state classification
[22]. In addition to the coarse-level functional connectivity, Firat
et al. [19] suggested pairwise correlations of voxels as features
while Baldassano et al. [20] extract the functional connectivity
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structures by modeling pairwise connectivity among voxels.
Also, a minimum spanning tree of a graph structure defined
by a functional connectivity matrix between all voxel pairs
is employed to represent a stimulus for brain decoding [21].
Note that, the aforementioned temporal methods are designed
to model only the pairwise relationships between voxels and
employ these relationships as features for brain decoding. Al-
though these methods represent the spatio-temporal information
to a certain degree, none of them represents the spatial relation-
ships among the brain volumes, recorded along the time course
of a cognitive stimulus. In other words, spatial models mostly
lack the temporal information while the temporal ones lose the
spatial relationships among the voxel BOLD responses.

The major motivation of this study follows the observation
that the strength of synaptic connections fundamentally deter-
mines how neurons influence each other’s firing [23]. Although
a neuron makes weak connections with a large number of other
neurons, it obtains its local excitation from strong inputs pro-
vided by few neurons that give similar responses to the same
stimuli. Therefore, there exist spatial and temporal relationships
among neurons residing within a locality, and the strength of
these relationships determines the strength of neural response.
It is observed that, at a coarser level, voxel BOLD responses are
functionally and spatially correlated in pre-defined local struc-
tures, i.e. functional and spatial neighborhoods. As an example,
Bazargani et al. [24] state that neighboring voxels belonging
to a homogeneous ROI have Hemodynamic Response Function
(HRF) with the same shape, possibly with slightly varying am-
plitude. In other words, spatially close voxels tend to give similar
BOLD responses to the same stimuli. Moreover, Kriegeskorte
et al. [25] report that a univariate model of activations fails to
benefit from local spatial combination of signals, and performs
worse than Searchlight methods for detection of informative
regions. They observe that spatially remote voxels may also
exhibit functionally similar time series.

Furthermore, Ozay et al. [26] observe that the voxel time se-
ries do not differ significantly to discriminate the different cog-
nitive states, but there exist slight variations among the voxel
intensity values of voxels located in a spatial neighborhood.
They propose a set of Local Meshes (LMM) to model the rela-
tionship among the spatially close voxels. They show that the
LMM features perform better than the voxel intensity values for
the classification of cognitive states. However, in [26], only the
brain volume which is obtained 6 s after the stimulus presenta-
tion is used for the construction of a model while the remaining
ones are discarded under the canonical HRF assumption.

Finally, Firat et al. [27] propose a Functional Mesh Model
(FMM) which is used to construct a set of local meshes by
selecting the nearest neighbors of voxels defined within a func-
tional neighborhood. Their experimental results show that their
features are more discriminative than the ones obtained within a
spatial neighborhood. Yet, they also estimate the mesh weights
using only a single intensity value for each voxel.

In none of the above mentioned models, the time series
recorded at all the voxels are fully employed to represent the
spatial relationships among the voxels of the fMRI data. The
available approaches either use the active voxels or the most cru-
cial time instances or both. Although these approaches smooth

the noise in voxel time series, and represent the huge amount of
data in a more compact way, it may result in losing important
information embedded in time series of brain volumes, recorded
under a stimulus.

The massively interconnected and dynamic nature of human
brain cannot be represented by considering only a collection of
selected voxels and/or time instances which are obtained from
fMRI data. In addition, the above mentioned studies indicate
that the relationship among the voxels is more informative than
the information provided by the individual voxels. Therefore, it
is desirable to develop a model which represents the relationship
among the voxel time series of fMRI signal, recorded during a
stimulus.

In this study, we employ the voxel time series measured dur-
ing a cognitive task to create a local mesh around each voxel
which models the relationship among the BOLD responses. The
concept of locality is defined over a neighborhood system. We
introduce two types of neighborhoods, namely, spatial and func-
tional neighborhoods. We construct a local mesh around each
voxel by using either a spatial [28] or functional neighborhood
system to generate a set of spatially or functionally local meshes.
We form a local mesh around each voxel by connecting the voxel
to its p-nearest neighbors under a star topology. In each mesh,
we represent the BOLD response of a voxel by a regularized
linear combination of BOLD responses of its spatially or func-
tionally nearest neighbors. We estimate the mesh edge weights
by solving a ridge regression equation. The mesh edge weights
estimated for each voxel enable us to represent the fMRI brain
volumes recorded during a stimulus by a graph which consists
of an ensemble of local meshes.

The proposed local mesh models are different from the con-
nectivity models defined over pairwise similarities between vox-
els and/or regions in the sense that the connectivity is defined
over a local neighborhood of voxels. We employ the estimated
weights of mesh edges as features to train and test the state-of-
the-art Support Vector Machines (SVM) for decoding a set of
cognitive processes measured by fMRI signals.

We test our approach in two event-related design experiments,
namely, visual recognition and emotional memory retrieval ex-
periments. Moreover, we perform cognitive task classification,
where each task contains a few hundreds of measurements on
Human Connectome Project (HCP) task fMRI dataset. We ob-
serve that the classifiers which employ the proposed local mesh
ensembles outperform the state of the art MVPA features.

In Fig. 1, the steps of the proposed method are summarized.
First, we preprocess the fMRI measurements and obtain voxel
intensity values. Then, we select voxels or anatomic regions
to eliminate the redundancies and to reduce the noise in our
dataset. After that, we define spatial and functional neighbor-
hood systems, and construct meshes, accordingly. Finally, we
estimate edge weights of meshes, and input them to a classifier
to train and test the cognitive states.

II. NEUROIMAGING DATA COLLECTION

In this study, three sets of fMRI data is tested to observe
the power of the suggested mesh representation for brain de-
coding problems. The first two datasets, namely, visual object
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Fig. 1. The flowchart of the proposed approach for obtaining local meshes
and classification of cognitive states.

recognition and emotional memory retrieval experiments are
designed and recorded by our team. The third dataset is taken
from Human Connectome Project (HCP).

A. Visual Object Recognition Experiment

In this experiment, fMRI measurements were recorded
while participants performed a one-back repetition detec-
tion task. The stimuli consist of gray-scale images belong-
ing to two categories, namely, birds and flowers. Each trial
lasts for 12 s containing stimulus presentation for 4 s, and
a following rest period of 8 s. Scanning was performed
on a Siemens 3T Magnetom TRIO MRI system. Func-
tional images were acquired using a gradient EPI sequence
(TR = 2000 msec, TE = 30 msec, flip angle = 90, 34
interleaved axial slices, voxel size = 3 mm × 3 mm × 3 mm
with 0.3 mm interslice gap). Since our TR = 2 seconds, we
obtain 6 measurements (scan volumes) for each trial.

This experiment consisted of 6 runs (sessions), and each run
contains 36 trials. Therefore, we obtained a total of 216 trials
(each having 6 measurements) for a single participant. A total of
1512 images were collected for a single participant. We collected
data from 5 participants.

B. Emotional Memory Retrieval Experiment

In this experiment, the stimuli consist of two neutral (Kitchen
utensils and Furniture) and two emotional (Fear and Disgust)
categories of images. Each trial started with a 12 seconds fixation
period followed by a 6 seconds encoding period. In the encod-
ing period, participants were presented with 5 images from the
same category, each image lasting 1200 ms on the screen. Fol-
lowing the fifth image, a 12 seconds delay period was presented
in which participants solved three math problems consisting of
addition or subtraction of two randomly selected two-digit num-

TABLE I
NUMBER OF SCANS PER SESSION AND ITS DURATION FOR EACH TASK

(MIN:SEC) FOR HCP DATA

Emotion Gambling Language Motor Relational Social WM

Scans 176 253 316 284 232 274 405
Duration 2:16 3:12 3:57 3:34 2:56 3:27 5:01

bers. Following the third math problem, a 2 seconds retrieval
period started in which participants were presented with a test
image from the same category, and indicated whether the image
was a member of the current study list or not. For a similar
experimental setting, please refer to [29].

This experiment consisted of 6 19-min runs and each run
contains 35 trials. A total of 210 trials and 3456 images were
obtained for a single participant. Scanning was performed on a
Siemens 3T Magnetom TRIO MRI system. Functional images
were acquired using a gradient EPI sequence (TR = 2000 msec,
TE = 30 msec, flip angle = 90, 34 interleaved axial slices, voxel
size = 3 mm × 3 mm × 3 mm with 0.3 mm interslice gap). We
collected data from 13 participants. We employ 6 measurements
(6 seconds of encoding and 6 seconds of following rest) of each
trial for classification. Notice that, we only employ the data
obtained during the encoding phase.

C. Human Connectome Project (HCP) task fMRI Data

We use task fMRI data of Human Connectome Project (HCP)
collected from 808 participants. During the experiments the
participants performed seven tasks namely Emotion Process-
ing, Gambling, Language, Motor, Relational Processing, Social
Cognition, Working Memory (WM) [30]. Note that the number
of scans and their duration vary for each task yet we obtain equal
duration for all participants (see Table I). Although, there are
total of 900 subjects in HCP task fMRI data release, 808 of them
performed all of the 7 tasks. Therefore, we use the data obtained
from 808 participants, and we discard the data obtained from
the remaining participants.

In this experiment, we define supervoxels such that we aver-
age BOLD responses of voxels residing in the same anatomi-
cal region, and denote each supervoxel with that average time
series. We use R = 90 anatomical regions of 116 AAL [31],
after removing anatomical regions of Cerebellum and Vermis.
Therefore, in our experiments, we have 90 supervoxels. Since
our aim is to classify cognitive experiments rather than cogni-
tive states within an experiment, we work in coarser granularity.
Moreover, using this dataset, we perform inter-subject classifi-
cation to see how well our framework performs for multi-subject
classification.

III. PREPROCESSING AND ANALYSIS OF NEUROIMAGING DATA

SPM8 is used for preprocessing and analysis of fMRI
datasets.1 Preprocessing of images consists of (a) correction of
slice acquisition timing across slices, (b) realigning the images

1http://www.fil.ion.ucl.ac.uk/spm/
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to the first volume in each fMRI run to correct for head move-
ment, (c) normalization of functional and anatomical images to a
standard template EPI provided by SPM2, and (d) smoothing im-
ages with a 6-mm full-width half-maximum isotropic Gaussian
kernel. Finally, we extract 116 Automated Anatomical Labeling
(AAL) regions [31] using Marsbar [32]. For the visual object
recognition and emotional memory retrieval datasets, General
Linear Model is implemented to find the distribution of active
voxels across the anatomic regions. The active voxels in object
recognition dataset are mostly located in occipital lobe, which is
selected as the region of interest (ROI) for this experiment. On
the other hand, the active voxels in the emotional memory re-
trieval dataset are scattered all over the brain regions. The most
discriminative voxels are, then, selected by t-test among all the
voxels of this dataset. We first split samples into two groups
according to their class labels. Then, we compute p-values for
each voxel that reflects how the two groups are well-separated
by each voxel. We select 800 voxels since almost 800 of them
have p < 0.005. We perform voxel selection repetitively for
each training split of nested cross validation. For HCP dataset,
rather than selecting the active voxels, we employ all of the 90
anatomical regions in the form of supervoxels, each of which is
represented by the average region time series. This is a widely-
accepted approach for the datasets, such as HCP, which consist
of task experiments of long duration.

IV. MESH REPRESENTATION OF FMRI SIGNAL WITH RESPECT

TO FUNCTIONAL AND SPATIAL NEIGHBORHOODS

The local mesh representation of fMRI signal, proposed in
this study, is constructed using a collection of voxels located
within a neighborhood of each voxel. For this purpose, first
we make a formal definition of locality. This task is achieved
by defining spatial and functional neighborhood systems. Then,
we define local meshes and based on the neighborhood we
obtain two types of meshes namely, spatially and functionally
local meshes. In the following sub-sections, we provide the
formal definition of neighborhood systems, construction of local
meshes and the estimation of mesh edge weights.

A. Neighborhood Systems

One of the most important tasks of this study is to construct a
linear relationship among the BOLD responses of voxels by em-
ploying ”locality” properties of the voxels. In order to achieve
this goal, we define two types of neighborhood systems, namely,
spatial and functional neighborhoods. In the case of spatial
neighborhood, we compare 3-dimensional coordinates of vox-
els and in the functional case, we define similarity measures to
compare voxel time series.

Definition 1 (Spatial Neighborhood): For each voxel v, we
define the spatial neighborhood centered in v with a radius π
by η(v, π) = {u ∈ V |d(v, u) < π} where V denotes the set of
voxels and d(v, u) denotes the Euclidean distance between the
spatial coordinates of v and u in 3-dimensional space.

Definition 2 ( Functional Neighborhood): Let Xv (t) denote
the time series of BOLD responses obtained from voxel v which
is recorded as the response of a series of stimulus during the

entire experiment. In order to find the functionally nearest neigh-
bor of a voxel v, we compute similarity between voxel time
series Xv (t) and Xu (t) for all the voxel pairs v, u ∈ V . Then,
we select p-functionally nearest neighbors of a voxel as the
voxels having p of the highest similarity with v. In this study,
we employ Pearson correlation, partial correlation and Granger
causality as functional similarity measures.

Fig. 2 shows examples of meshes formed within spatial
and functional neighborhood. Note that functionally p-nearest
neighbors of a voxel may or may not be the same as the spa-
tially p-nearest neighbors. Practical evidence indicates that most
of the spatially close voxels are also functionally similar. How-
ever, some of the voxel pairs are spatially far apart, yet they are
functionally close to each other (see Fig. 2(b)).

B. Construction of Local Meshes

Based upon the neighborhood systems introduced in the pre-
vious section, the concept of locality is represented by a set of
meshes defined over a sequence of brain volumes. For this pur-
pose, two types of meshes, namely, spatially and functionally
local meshes, are established.

Both types of meshes are constructed around each voxel of the
brain volume using a predefined neighborhood system. Once we
select the neighborhood system, we form a local mesh around
each voxel by connecting the voxel to its neighboring voxels
in a star topology. The voxel located at the center of a mesh
is called the seed voxel. Since we form the meshes around all
of the voxels in the brain volume, the meshes defined over a
neighborhood system may overlap. A seed voxel in a mesh may
become a neighboring voxel of a seed voxel in a different mesh.

The formal definition of the local meshes are given below:
Definition 3 (Local Meshes): For each voxel v in the brain

volume, a local mesh is defined as Mv = (V, E) where Vv =
{v ∪ ηp [v]} represents a set of the voxels of the mesh, and

Ev = {evu : ∀u ∈ ηp [v]}

is a set of edges formed between the seed voxel v of the mesh
and its p-nearest neighbors (see Fig. 3).

When the spatial neighbors are used to form meshes, we call
them Spatially Local Meshes (SLM) (see Fig. 3). On the other
hand, when the nearest neighbors are selected based on the
similarity of voxel time series, we call the meshes Functionally
Local Meshes (FLM) (see Fig. 4).

For FLM, the same star topology is defined for all meshes
with a fixed mesh size p. On the other hand, for SLM, different
voxels may have different number of neighbors due to the def-
inition of spatial neighborhood and topology of 3-dimensional
locations of voxels. In both cases, the voxels and the edges
formed between them in a mesh do not change in time. How-
ever, the voxel intensity values measured for each entry of the
time-series representing the BOLD response, change in time.
Since we estimate a set of edge weights for each cognitive stim-
ulus, they remain the same for the duration of a stimulus and
only change across the stimuli.
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Fig. 2. A local mesh formed by (a) spatial neighbors and (b) functional neighbors of a seed voxel. In both figures, the voxel denoted with yellow color at the
center is the seed voxel. In (a), red voxels denote the spatially nearest neighbors of the yellow voxel within a radius of 1 unit and blue voxels have

√
2 unit

distance to yellow voxel. In (b), we have a mesh formed with functional neighbors around the seed voxel denoted with yellow color. (a) Spatially local meshes. (b)
Functionally local meshes.

Fig. 3. Design of a spatially local mesh for modeling the relationship among the BOLD responses of voxels. (a) For simplicity, a seed voxel is depicted in an
axial slice at the center of a mesh (red) with its four spatially nearest neighbors (yellow). Neighboring voxels are selected within a 3D brain volume. (b) fMRI
time series are recorded at each voxel, for each stimulus for bird and flower classes. (c) A local mesh is computed using the responses obtained from a seed voxel
xN,v and its four nearest neighbors for the last sample N . We also visualize voxel intensity values of a sample response xN,u obtained from voxel u.

Once we define a mesh around each voxel, we address the
problem of estimating the edge weights. The proposed edge
estimation method is explained next.

C. Estimation of Edge Weights of Meshes

Suppose that we record the BOLD response at a voxel v
given to a stimulus within a window w in order to measure the
brain activation for a predefined cognitive state with label c. We
denote the intensity values of the BOLD response measured at
a voxel v within window w by the vector xw,v = [xw,v (t)]Dt=1 .
For each stimulus, we record D measurements.

We form meshes around voxels for each window. For a win-
dow, we denote the estimated weight of an edge between seed
voxel of a mesh v and a neighboring voxel u by aw,v ,u . We

estimate the edge weights for both spatially and functionally
local meshes in the same way. When we concatenate the BOLD
responses of all stimuli, we obtain a vector Xv (t) = [xw,v]∀w

of BOLD responses measured from a voxel v for all windows
of training samples. Recall that, we employ Xv (t) to select
functional neighbors using correlations.

We represent a mesh formed among the BOLD response of
a seed voxel v of the mesh, and the BOLD responses of its
p-nearest neighbors for a window w as:

x̂w,v =
∑

u∈ηp [v ]

aw,v ,u xw,u, (1)

where x̂w,v denotes the estimated BOLD response vector of
voxel v for window w. We estimate the edge weights of a mesh
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Fig. 4. Design of a functionally local mesh using the voxel time series. (a) A sample functional connectivity matrix formed using Pearson correlation. p-
functionally nearest neighbors of a voxel are denoted as the ones with the dark-to-light red colors. (b) fMRI measurements are recorded for each stimulus for bird
and flower classes. (c) We depict a functional mesh formed around a seed voxel, in star topology. The edge weights are computed by using the response obtained
from a seed voxel xN,v and the responses of its four functionally nearest neighbors, xN,s , xN,u , xN,y , xN,z , for the last sample N .

formed around a voxel v for a window w by minimizing the
regularized linear model error as follows:

min
aw , v , u

(
||x̂w,v − xw,v||2 + λ ||aw,v ,u ||2

)
(2)

where λ ∈ R denotes regularization parameter. Notice that ηp

corresponds to ηspat
p if meshes are formed considering spa-

tial neighborhood, and corresponds to ηf unc
p if the meshes are

formed considering functional neighborhood. We compute an
edge vector aw,v = [aw,v ,1 , aw,v ,2 , . . . , aw,v ,p ] using ridge re-
gression as

aw,v = (QT
w,vQw,v + λI)−1QT

w,vxw,v, (3)

where Qw,v is a D × p matrix consisting of BOLD responses
obtained from p-nearest neighbors of a seed voxel v for window
w such that

Qw,v = [xw,u], ∀u ∈ ηp [v]. (4)

V. CLASSIFICATION OF COGNITIVE STATES FOR

BRAIN DECODING

The representation power of the proposed mesh ensemble
is analyzed in the fMRI recordings during a number of brain
decoding tasks. The major question is then how well a cognitive
state can be represented by the ensemble of meshes? The answer
to this question can be partly observed from the performance of
the classifier trained with mesh edge weights.

Recall that for each cognitive stimulus or task, we record a
sequence of brain volumes obtained for a window. We estimate
mesh edge weights for each window w, where w covers the
BOLD responses obtained for each stimulus for visual recog-
nition and emotional memory retrieval experiments. For HCP

dataset, window w covers the duration D of a cognitive task,
where durations can be found in Table I. Each stimulus or task
is associated with a label c. Finally, each sample in the dataset
is represented by a vector with the entries of the estimated mesh
edge weights in the input space of a classifier.

Formally speaking, for each window w with label c, the
edge weights aw,v ∈ R1×p are used to construct a feature vec-
tor Fw = [aw,1 ,aw,2 , . . . ,aw,|V |] by concatenating all edge
weight vectors, where |V | denotes the number of voxels. We
employ Fw features to train and test classifiers.

VI. BRAIN DECODING EXPERIMENTS PERFORMED ON THE

FMRI DATASETS

In order to observe the validity of the proposed mesh represen-
tation, we perform two groups of experiments. In the first group,
we train and test a Support Vector Machine (SVM) classifier by
using the labeled fMRI data recorded using the experimental
setups explained in Section II. In this group of experiments, we
examine the power of the mesh edge weights for representing
the brain states. In the second group of experiments, we analyze
the validity of the local meshes by exploring the similarities
among the voxel time series in each mesh, and the distribution
of the error of the proposed regularized linear regression model.

A. Comparison of Mesh Weights With State-of-the-art fMRI
Features

We compare the proposed spatial and functional mesh weights
with the state-of-the-art features, by measuring the performance
of the classifiers trained by these features. We train an SVM
classifier with linear kernel, and classify an unknown stimulus.
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We perform seven sets of classification experiments on three
different groups of fMRI datasets:

1) In the first and second set of experiments, we represent a
cognitive stimulus using the edge weights of meshes. The
classification performances are measured when the edge
weights obtained from the spatially (SLM) and function-
ally local meshes (FLM) are fed as the input of an SVM
classifier.

2) In the third and fourth set of experiments, we tested
the classification performances of SVM by employing
features obtained using Local Mesh Model (LMM) and
Functional Mesh Model (FMM). Recall that both LMM
and FMM employ only a single measurement from the
BOLD response for each voxel omitting the rest of the
signals measured during a stimulus.

3) In the fifth group of experiments, we test the perfor-
mance of SVM classifiers which employ features that are
computed using pairwise Pearson correlation (FC). First,
we compute the pairwise correlations between the voxel
BOLD responses given by seed voxels and each of their
p-nearest neighbors for each stimulus. In other words, first
meshes are constructed around seed voxels, and then pair-
wise correlations are computed between voxel pairs within
meshes instead of estimating the edge weights within a
neighborhood. Then, we form our feature vector by con-
catenating the correlation values in all meshes. Note that,
we obtain feature vectors whose sizes are equal to that
of SLM and FLM by concatenating only the distances
within meshes to make a fair comparison.

4) In the sixth set of experiments, we analyze the perfor-
mance of SVM classifiers where raw voxel intensity val-
ues are used as features to train and test classifiers. For
RAW-mid, we only used the third instance xw,v (3) in the
middle of a BOLD response xw,v following our assump-
tion that if a voxel becomes active, then its HRF reaches
to its peak value after 5–6 seconds (around t = 3). On
the other hand, RAW-mean depicts the case where we
employed the average of D measurements of xw,v. We
also concatenate each of the D measurements of BOLD
response xw,v (t)D

t=1 to obtain results for RAW-all. The di-
mension of a feature vector constructed for RAW-mid and
RAW-mean equals to 1254 for visual object recognition
experiment, 800 for emotional memory retrieval experi-
ment and 90 for HCP task fMRI data. Moreover, since we
concatenate all measurements for RAW-all, the size of the
feature vectors used for RAW-all equals to D times the
size of features vectors for RAW-mean and RAW-mid.
Since each task of HCP data has different durations and
we do not perform event-related task classification, we
cannot employ RAW-mid and RAW-all experiments on
HCP data.

5) In the seventh set of experiments, we extract features us-
ing Principal Component Analysis (PCA) and spatial In-
dependent Component Analysis (ICA). We map the fMRI
data onto the first 100 components that retain 99% of the
variance. Following PCA, we applied spatial ICA to our
raw data using FastIca [33].

B. Classification Results for Brain Decoding

We perform intra-subject classification using SVM classi-
fiers with visual object recognition and emotional memory re-
trieval experiments and inter-subject classification using HCP
task fMRI dataset.

In visual object recognition and emotional memory retrieval
experiments, we perform nested cross validation across runs
[34]. The outer loop runs for 6 folds, and within each fold of
the outer loop, an inner loop runs for 5 folds for parameter
tuning. For each fold of the outer loop, we employ measure-
ments obtained from 5 runs for decoding, and 1 run for test.
For each fold of the inner loop, we divide the decoding part
into 4 runs of training set and 1 run of validation set. We use
the validation set to optimize the cost parameter, C of SVM
and the regularization parameter λ. Similarly, we also optimize
the number of neighbors p used for computation of functional
neighborhoods and radius of neighborhoods π used for com-
putation of spatial neighborhoods. After we estimate the pa-
rameters in the inner loop, we train classifiers using decoding
part with the estimated optimal parameters, and measure the
test performance using the unseen test set. We searched for
the optimal values of λ in {0, 0.125, 0.25, 0.5, 1, 2, 4, 8}, SVM
cost parameter C in {0.001, 0.01, 0.1, 1, 10, 100, 1000} and π
in {1,

√
2,
√

3}. We optimize the number of neighbors p in
P = {2, 3, . . . , 30} for visual object recognition experiment,
and p in S = {5, 6, . . . , 15} for emotional memory retrieval
experiment.

For HCP task fMRI experiments, we split our data into 8
chunks, where each chunk contains fMRI data collected from
101 participants. We perform nested cross validation in which
the outer loop runs for 8 folds, and within each fold of the outer
loop, an inner loop runs for 7 folds for parameter tuning. We
search for the optimal values of λ in {0, 32, 64, 128, 256, 512},
C in {0.001, 0.01, 0.1, 1, 10, 100, 1000} and p in
T = {5, 10, 15, 20, 25, 30} on the validation set. Since
the data scale in these datasets is at region level, we searched
for the optimal λ and p values in a different range during
these experiments. Note that, unlike voxels, supervoxels are
not located on a full grid. Therefore, we select the number of
spatial neighbors from the set T = {5, 10, 15, 20, 25, 30} for
HCP dataset.

We analyze the effect of similarity measures in
subsection VI-C. As will be explained in this subsection, Pear-
son correlation provides relatively better decoding performances
compared to partial correlation and Granger causality. For this
reason, we conduct the experiments on FLM by just measuring
Pearson correlation to select nearest neighbors.

Visual Object Recognition Experiment: We give the average
classification performances of 6-fold obtained for visual object
recognition experiment in Table II. Results reflect that FLM and
SLM features discriminate brain states much better than other
features.

Emotional Memory Retrieval Experiment: We provide per-
formances for 2-class and 4-class classification experiments.
In 2-class experiments the classes correspond to the neutral
and emotional tasks (see Table III). In 4-class experiments, we
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TABLE II
CLASSIFICATION PERFORMANCE (%) OF SVM CLASSIFIER COMPUTED IN VISUAL OBJECT RECOGNITION EXPERIMENT

Participant FLM SLM FMM FMM LMM LMM FC RAW RAW RAW PCA ICA
mean mid mean mid mean mid all

1 91.42 93.14 73.14 80 70.29 74.28 72 74.85 78.29 75.43 73.71 86.29
2 83.81 81.43 67.14 68.09 68.57 73.33 71.90 71.90 74.76 76.19 73.33 79.52
3 92.86 83.33 67.62 75.71 68.57 78.09 53.33 70 75.71 76.67 70.48 79.52
4 89.05 76.67 71.90 75.23 73.33 74.76 62.38 74.29 78.57 70.48 72.86 87.62
5 78.09 81.43 68.57 75.71 63.33 71.43 57.14 68.09 70.48 67.62 68.57 75.71
Avg. 87.04 83.20 69.67 74.95 68.82 74.38 63.35 75.56 74.68 73.27 71.79 81.73

TABLE III
CLASSIFICATION PERFORMANCE (%) OF SVM CLASSIFIER COMPUTED IN EMOTIONAL MEMORY RETRIEVAL EXPERIMENT (2-CLASS)

Participant FLM SLM FMM FMM LMM LMM FC RAW RAW RAW PCA ICA
mean mid mean mid mean mid all

1 97.62 97.14 80.48 83.33 78.10 80.48 84.29 81.43 76.19 92.86 74.76 94.29
2 92.86 90.95 79.52 80.48 77.62 79.52 76.19 83.81 75.24 90.48 73.81 82.85
3 73.33 69.52 67.14 55.71 60.48 50.48 61.90 57.14 50.48 67.62 58.57 64.76
4 87.62 87.62 73.33 65.71 77.62 67.14 76.67 62.38 56.67 73.33 65.24 78.57
5 92.38 91.90 77.62 61.43 72.86 56.19 84.29 66.19 54.76 71.43 64.76 83.81
6 98.10 97.62 71.43 74.76 81.90 81.90 89.05 66.19 68.57 79.05 72.86 88.57
7 92.86 92.86 65.24 67.62 64.29 65.24 80.00 63.81 56.67 81.90 72.86 85.24
8 90.00 89.05 66.19 63.33 68.10 56.67 79.05 67.14 60.00 79.05 63.33 78.57
9 90.00 90.00 79.52 72.86 80.48 69.52 78.57 79.05 72.38 94.76 71.90 90.48
10 93.81 89.52 71.43 65.24 72.38 54.76 74.76 61.43 59.52 74.29 63.33 79.52
11 95.24 95.24 69.05 70.00 67.62 67.62 89.05 75.71 78.10 87.14 79.05 93.81
12 78.57 77.62 71.90 61.90 76.67 62.38 78.10 63.81 66.67 75.71 80.95 98.10
13 96.67 97.14 53.33 59.05 67.62 65.71 88.10 58.57 55.24 69.52 58.57 90.00
Avg. 90.70 89.71 71.25 67.80 72.75 65.97 80.00 68.21 63.88 79.78 69.23 85.27

TABLE IV
CLASSIFICATION PERFORMANCE (%) OF SVM CLASSIFIER COMPUTED IN EMOTIONAL MEMORY RETRIEVAL EXPERIMENT (4-CLASS)

Participant FLM SLM FMM FMM LMM LMM FC RAW RAW RAW PCA ICA
mean mid mean mid mean mid all

1 81.43 76.67 60.48 57.62 41.43 53.81 33.81 22.38 22.38 22.38 21.43 20.95
2 75.24 68.57 51.91 41.43 48.09 38.57 48.57 20.95 19.52 31.91 21.90 58.57
3 40.95 41.43 34.76 32.38 32.86 32.38 26.19 22.86 22.86 22.86 22.86 22.86
4 61.90 57.62 43.33 32.86 40.48 31.43 32.86 21.90 21.90 38.10 21.90 22.38
5 73.33 67.62 47.62 31.43 35.24 32.86 22.86 21.90 21.90 21.90 22.38 21.43
6 85.71 77.14 49.05 49.52 47.62 47.62 30.95 21.90 23.33 31.43 21.90 22.38
7 59.05 57.62 40.95 34.29 32.86 36.67 31.43 30.95 30.00 30.00 30.48 21.90
8 64.29 64.76 46.19 28.10 43.33 30.00 27.14 22.38 21.90 22.38 21.90 22.38
9 51.43 50.95 35.24 34.29 29.05 24.29 39.05 23.81 24.29 30.95 21.90 22.38
10 65.71 54.29 37.62 27.62 36.19 32.86 47.14 26.19 24.76 35.71 22.38 49.52
11 69.05 70.95 45.71 44.29 42.38 38.57 61.90 22.38 22.38 24.76 22.38 22.38
12 54.76 51.43 40.00 38.10 42.86 45.71 47.14 32.38 37.14 36.67 21.90 20.95
13 82.38 78.10 43.33 37.14 50.95 33.33 63.33 21.90 21.43 21.90 20.95 21.43
Avg. 66.56 62.86 44.32 37.62 40.26 36.78 39.41 23.99 24.14 28.54 22.64 26.89

classify kitchen utensil, furniture, fear and disgust, where
kitchen utensil and furniture belong to the neutral category,
and fear and disgust belong to the emotional category (see
Table IV).

The results of 2-class and 4-class classification experiments
show that we obtain substantially better performances using
features extracted for FLM and SLM compared to the perfor-
mances of other features. Performance with the ICA and func-
tional connectivity features perform much better than that of the
PCA.

We observe that the performances decrease when we use
only the middle or mean values of BOLD responses to estimate
FMM-mean, LMM-mean. The performances also decrease for
the feature spaces of RAW-mid, RAW-mean and RAW-all.
These results show that all of the values of voxel BOLD response
carry information to extract a powerful representation for fMRI
data.

The emotional memory retrieval experiment data has a draw-
back for 4-class brain decoding. The number of samples at each
run is nearly the same in emotional and neutral categories, which
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TABLE V
CLASSIFICATION PERFORMANCE (%) OF SVM CLASSIFIER

FOR HCP TASK FMRI DATA

FLM SLM FMM LMM FC RAW
mean mean mean

96.32 96.83 27.28 14.63 90.09 14.28

Fig. 5. Mean and standard deviation of classification performances of SVM
computed in visual object recognition experiment.

Fig. 6. Mean and standard deviation of classification performances of SVM
computed in emotional memory retrieval experiment (2-class).

provides a balanced dataset. However, runs are mostly unbal-
anced in four subcategories. As a consequence, we observe
nearly chance results with raw data when we perform 4-class
classification.

Human Connectome Project (HCP) task fMRI Data: Results
in Table V reflect that employing FLM and SLM features are
much better to classify cognitive tasks in inter-subject experi-
ments compared to other methods. While, FMM-mean, LMM-
mean and RAW-mean give nearly chance results, FC also has
a discriminative power. This result indicates that a functional
connectivity feature, such as Pearson correlation, capture the
information content of the data. Considering the long time se-
ries of BOLD responses in HCP dataset, this result is expected.

We provide the mean and standard deviations of classification
performances obtained by different meshes that are constructed
with p ∈ P for visual object recognition experiment in Fig. 5,
and with p ∈ S for emotional memory retrieval experiment in
Figs. 6 and 7. In Fig. 5, bars represent the mean classification
performance averaged over all p ∈ P , whereas in Figs. 6 and 7,
bars represent the mean classification performance averaged
over all p ∈ S. In these figures, each error bar represents stan-
dard deviations of the corresponding performance value. For

Fig. 7. Mean and standard deviation of classification performances of SVM
computed in emotional memory retrieval experiment (4-class).

each participant, the first bar depicts the performance of FLM
features which is extracted by using the entire temporal mea-
surements of the BOLD responses, whereas the last two bars
depict performances obtained using just the mean or middle
values of BOLD responses. We observe that standard devia-
tion of performance values obtained using various mesh sizes
decreases when temporal measurements are considered for sta-
tistical learning of the models. In other words, the methods
employing temporal measurements are more robust to changes
of mesh size p than the methods which do not employ temporal
measurements.

Notice that, the entries of BOLD response vector, xw,v =
[xw,v (t)]Dt=1 , at each neighboring voxel, contribute to the esti-
mation of mesh edge weights in the regularized linear model
of (1). If a voxel has a noisy entry in the BOLD response vec-
tor, the effect of this entry on the estimation of mesh weights,
will be relatively small considering the entire time sequence of
BOLD response. However, when we take a single value, such
as the mean or middle measurement, not only we lose impor-
tant information about the BOLD response, but also the mesh
representation becomes vulnerable to artifacts. Averaging the
BOLD response may avoid the effect of noise with the price of
too much smoothing, which results in losing the discriminating
information of fMRI data among the cognitive states. This fact
can be roughly observed when we compare the subject depen-
dent performances of FLM and SLM to that of FLM-mean,
FLM-mid, SLM-mean and FLM-mid methods. For example,
FLM performance of first participant in Fig. 6 varies between
96% - 99% whereas FMM-mean and FMM-mid performances
vary between 75% - 91% and 79% - 87%, respectively. The high
variance in performances of the mesh representations estimated
by single BOLD response value may be attributed to the effect
of artifacts hidden in fMRI data.

C. Analysis of Similarity Measures for Neighborhood
Selection

Recall that, we have defined functional neighborhood based
on the similarity of voxel time series. In this subsection we ana-
lyze the effect of different similarity measures on the classifica-
tion performance. We compare the results of FLM formed using
Pearson correlation, partial correlation and Granger causality as
the similarity measure to select functional nearest neighbors in
the visual recognition experiment (see Table VI).
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Fig. 8. BOLD responses of a voxel set consisting of 10 voxels. (a) Randomly selected voxels. (b) A random seed voxel with its Spatial Neighbors. (c) A random
seed voxel with its Functional Neighbors.

TABLE VI
CLASSIFICATION PERFORMANCE (%) OF SVM CLASSIFIER COMPUTED IN

VISUAL OBJECT RECOGNITION EXPERIMENT

P FLM FLM FLM
Corr Parcorr Granger

1 91.42 88.33 86.67
2 83.81 87.50 78.24
3 92.86 87.03 87.96
4 89.05 79.63 77.78
5 78.09 81.95 74.07
Avg. 87.04 84.89 80.94

Our results on visual object recognition experiment reflect
that selecting functional neighbors based on Pearson corre-
lation leads to better accuracy compared to partial correla-
tion or Granger causality to select the neighbors of seed
voxels. We also observe that meshes formed by Granger
causality have the lowest classification performance on this
dataset.

D. Analysis of Local Meshes

The major assumption of the proposed mesh representation
is that the voxel BOLD responses are similar to each other at a
predefined locality, so that a BOLD response of a voxel can be
represented by a linear combination of the BOLD responses of
its nearest neighbors. In other words, we assume that the error
of a regularized linear regression model is small enough such
that a cognitive stimulus can be represented by a set of local
meshes, where the edge weights of the meshes can be estimated
by minimizing the expected square error.

1) Statistical Analysis of Correlations of Voxels: In order to
understand how voxels within a neighborhood behave, and how
their behavior differs from the behavior of random voxel sets,
we plot a seed voxel with i) a set of randomly selected voxels
(Fig. 8(a)), ii) its ten spatially (Fig. 8(b)) and iii) ten func-
tionally (Fig. 8(c)) nearest neighbors. We observe that, sample
voxels located within spatial and functional neighborhoods per-
form similar under presentation of the same stimuli.

Although we select spatially or functionally closest voxels
as neighbors, we need to further analyze the distribution of
correlation values between the seed voxels and their neighbors
to understand if the closest voxels are also highly correlated.
Therefore, we compute pairwise relationship (i.e. correlation)

between the seed voxels and the surrounding voxels using Pear-
son correlation. In our analysis, surrounding voxels are selected
as (a) spatially nearest neighbors of seed voxels, and function-
ally nearest neighbors of seed voxels selected using (b) Granger
causality (c) partial correlation (d) Pearson correlation. First,
we compute correlations between ten surrounding voxels and
the seed voxel. Then, we depict the histograms of all correla-
tions computed for all voxels with their surrounding voxels in
meshes.

The normalized Granger causality histogram in Fig. 9(b) re-
flects that neighboring voxels with maximum Granger causality
value may have negative correlations with the seed voxel. On
the other hand, the results show that correlation values of the
voxels observed with the highest frequency are close to 0.9 when
the histograms are computed for meshes formed using spatially
(see Fig. 9(a)) and functionally close voxels selected using par-
tial correlation (Fig. 9(c)) and Pearson correlation (Fig. 9(d)).
These observations indicate that the voxels modeled in the same
mesh have statistical relationship with each other. Therefore,
one may expect that the linear relationship among the BOLD
responses at a locality, defined by a neighborhood system, pro-
vides a reasonable fit to the data.

2) Statistical Analysis of Models: Recall that, we represent
the intensity values of each voxel as a regularized linear combi-
nation of those values of its p-nearest neighbors in our models.
Yet, we obtain a regression error for each mesh for the estima-
tion of seed voxels considering its neighbors. In the next set
of experiments, we analyze how well the seed voxels are rep-
resented in terms of their nearest neighbors by exploring the
model estimation error of the proposed representation.

For this purpose, we employ a goodness of fit measure, called
R2 , defined as one minus the residual variation divided by total
variation, where residual variation is the summation of square
errors obtained from regression model, and total variation is the
variance of the distribution of the actual data.

Notice that the R2 measure takes values between 0 and 1, such
that the values closer to one represent better fit of models. In the
analysis, we computed R2 values for all meshes of a participant
formed for all samples and around all voxels. In Fig. 10, we plot
the histograms for R2 values computed when the meshes are
formed using (a) spatially nearest voxels, and (b) functionally
nearest voxels.

In the experiments, if seed voxels of meshes formed using
spatial or functional neighbors are represented in terms of their
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Fig. 9. Histograms of correlations between seed voxels and surrounding voxels. (a) Spatial closeness. (b) Granger causality. (c) Partial correlation. (d) Pearson
correlation.

Fig. 10. Histograms of R2 values. (a) Spatial Neighbors. (b) Functional
Neighbors.

neighbors, then we observe that the mean values of histograms
for R2 are 0.90 and 0.93, respectively (Fig. 10(a) and (b)).
Therefore, employing spatial or functional neighbors during the
construction of meshes results in good model fit, where the latter
leads to slightly better fit compared to the former.

VII. CONCLUSION

In this study, we propose a novel method which maps fMRI
measurements, recorded during a cognitive stimulus to a set of
local meshes. The proposed method defines two types of lo-
cal meshes around each voxel, namely spatially local meshes
(SLM) and functionally local meshes (FLM). While SLM rep-
resents the relationships among voxel BOLD responses in a
spatial neighborhood system, FLM represents them in a func-
tional neighborhood. Local mesh edge weights enable us to
represent the crucial information in fMRI data to characterize
the brain states. This fact is verified in brain decoding problems.
We observe that FLM and SLM features perform substantially
better compared to the state-of-the-art fMRI features, such as
ICA, PCA, Pearson correlation and vectors of raw voxel inten-
sity values, to decode the cognitive states. The decoding perfor-
mances are first measured in two fMRI datasets, collected by our
team while the subjects perform visual object recognition and
emotional memory retrieval tasks. Then, comparably high per-
formances are obtained in the publicly available task dataset of
Human Connectome Project. The relatively high performances
of the local mesh representation partially indicate the validity
of the major assumption of this study, that is, the relationship
among the voxel BOLD responses can be approximated by a
regularized linear model in a predefined locality.

We observe that classification performances of SVM depend
on the mesh size p, and varies for each participant. However,
the local meshes estimated by the entire time series of BOLD
response not only increase the decoding performances, but also

decrease the effect of mesh size on performances. This fact
is confirmed by measuring the standard deviation of decoding
performances as the mesh sizes change. It is observed that when
we take the average or the middle values of the BOLD responses,
the standard deviation of the performances with respect to the
mesh size, increases. Therefore, mesh representations estimated
by the entire temporal measurements of BOLD response are
robust to the effect of mesh sizes for decoding the cognitive
tasks.

A future research direction will be the development of algo-
rithms to generalize the ensemble of local meshes to represent
resting state fMRI data for detection of diseases.
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